```
Menouflya University
Faculty of Engineering
Shebin El-Kom
Summer - Semester Exam.
Academic Year: 2014-2015
```



```
Year: M. Sc.
Department: Electrical Engineering
Subject: Theories of Electrical
Machines, ELE 602
Time Allowed: 3 hours
Date: 20/1/2015
```

Allowed Tables and Charts: None
Answer only (5) of the following

## Ouestion (1)

(20 Marks)
Transform the balanced two - phase induction machine of Figure Q1a to axes stationary relative to the stator as shown in Figure Q1b.


Figure Q1a

Ouestion (2)
(20 Marks)
Transform the balanced two - phase induction machine of Figure Q2a to axes stationary relative to the rotor as shown in Figure $Q 2 b$.


Figure Q2b

## Please turn over

A $2.2 \mathrm{~kW}, 400 \mathrm{~V}, 3$ - phase 10 - pole, $50 \mathrm{~Hz}, 1500 \mathrm{rpm}$, squirrel cage induction motor. The motor which is to be started by a star - delta starter has the following constants: $R_{l}=8.37 \Omega$, $R_{2}{ }^{\prime}=7.83 \Omega, x_{1}=18.4 \Omega, x_{2}{ }^{\prime}=18.4 \Omega, X_{m}=400 \Omega$. The full load slip is $5.3 \%$. Determine the full load electromagnetic torque, stator input current and power factor using both (i) approximate and (ii) exact equivalent circuits, as well as (iii) the general machine theory. Neglect both iron and mechanical losses.

## Ouestion (4)

Calculate the torque of a 3 - phase, 4 - pole induction motor, 50 Hz when it is fed from: (i) symmetrical 3 phase 400 V supply at 0.05 slip, (ii) asymmetrical 3 phase voltages to neutral, and running with the same speed where the three voltages are $V_{a}=240 \angle 0^{\circ}$, $V_{b}=183 \angle 228^{\circ}, V_{c}=183 \angle 132^{\circ}$, and motor parameters are $X_{S}=X_{r}^{\prime}=4 \Omega, R_{s}=R_{r}^{\prime}=1 \Omega$, $X_{m}=100 \Omega$.

## Ouestion (5)

## (20 Marks)

A balanced, star - connected, three - phase induction machine has $R_{S}=R_{r}^{\prime}=1 \Omega$, $X_{s}=X_{r}^{\prime}=110 \Omega$ and $X_{m}=100 \Omega$. Find the electromagnetic torque curve for $\mathrm{s}=0.9$ and balanced supply voltage of 400 V (line), 50 Hz , using both (i) classical theory and (ii) general
machine theory.

## Ouestion (6)

(20 Marks)
(a) Write the basic voltage equations of a two phase salient pole synchronous machine. Find the different inductances stated in voltage equations. Examine the machine when the axis of $\alpha-$ phase winding coincide with that of the $D$ winding. Examine the machine when the axis of $\alpha$-phase winding is perpendicular to that of the $D$ winding.
(b) A 2 - phase, 4 - pole servomotor has the following parameters per phase $R_{S}=350 \Omega$, $R_{r}^{\prime}=250 \Omega x_{S}=x_{r}^{\prime}=50 \Omega, X_{m}=900 \Omega$. This motor is operated with 115 V across the reference winding (phase A) and 75 V across the control winding (phase B) , the latter leading the former by $90^{\circ}$. Calculate the stator currents, output power, and motor - shaft torque at a slip of 0.5 . The rotational losses under conditions given above are 0.7 W . Both the windings have equal number of turns.

## Good Luck Every One

This examination measures the following ILOs

| Question number | 1 | 2 | 3 | 4,6 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ilos | $a 1-1, a 3-1$ | $b 1-2, b 2-1$ | $C 4-1$ | $b 1-2, b 2-1$ | $a 1-1, a 3-1, d 2-1$ |

